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Our recently developed intermediate Hamiltonian Fock-space coupled-cluster (FS-CC)
method with singles and doubles is applied to calculation of equilibrium geometries, har-
monic frequencies and adiabatic excitation energies for some excited states of N2 and CO.
Due to the intermediate Hamiltonian formulation, which provides a robust computational
scheme for solving the FS-CC equations, and the efficient factorization strategy, relatively
large basis sets and reference spaces are employed permitting a comparison of calculated
properties with experimental data.
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The coupled-cluster (CC)1–3 method, which for many years has been pri-
marily considered as an efficient tool for description of the energetics and
properties of the ground state, is now gaining importance also in the stud-
ies devoted to excited states. This path of development of the CC theory is
due, on one hand, to successful combining of the ground state CC wave
function with the equation-of-motion (EOM) treatment of excited states,
and, on the other, to the significant progress made in the multireference
(MR) formulations of the CC theory.

The EOM-CC approach4, which is to a large extent equivalent to the cou-
pled cluster linear response (LRCC) theory5, offers a pretty straightforward
computational scheme which is a CI-like approach applied to a similarity-
transformed Hamiltonian. The transformation is defined by the ground
state single-reference coupled cluster wave operator. The EOM-CC excita-
tion energies, in spite of being size-intensive6, are contaminated with dis-
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connected contributions and this is an inherent shortcoming of the
method7,8. Size-intensity is a concept introduced to characterize methods
for calculation of transition energies. It can be considered as analogous to
separability conditions in energy calculations. Both proper separability of
the energy and size-intensivity of excitation energies, are only necessary
but not sufficient conditions for size-extensivity. Size-extensivity is a more
general property. It is convenient to relate size-extensivity to connectivity
of the energy or excitation energy expressions if possible. Separability con-
ditions and size-intensivity are associated with considering specific features
of a method while applied to systems consisting of noninteracting subsys-
tems. Such considerations provide us with useful information about the
method but are not able to give its full characteristic.

As alternatives to the EOM-CC approach to excited states, the multi-
reference formulations of the coupled cluster method9,10 can be considered.
Distinguishing two types of electron correlation, the MR-CC methods as-
sume a different treatment of each of them. Each type of electron correla-
tion is associated with one of two subspaces in which the functional space
is partitioned. The reference space, containing all strongly interacting
zeroth-order functions, corresponds to static correlation effects while its or-
thogonal complement is related to dynamic correlation. Eigenvalues of the
so-called effective Hamiltonian, whose action is restricted to the reference
space, constitute a subset of eigenvalues of the Hamiltonian. The effective
Hamiltonian contains the so-called wave operator which provides informa-
tion about dynamic correlation. The MR-CC approaches introduce cluster
expansions for the wave operator whose efficiency has been proved in
single-reference cases. The standard MR-CC formulations lead to a two-step
procedure of finding solutions of the Schrödinger equations. In the first
step cluster amplitudes must be determined. The second step is the con-
struction of the effective Hamiltonian and its diagonalization. It follows
that to preserve full size-extensivity of such an approach not only the clus-
ter amplitudes and the effective Hamiltonian should be represented by con-
nected quantities but also diagonalization of the effective Hamiltonian
should not generate disconnected contributions to the energies in the sec-
ond step.

Although the first multireference CC approaches were proposed very
soon after introduction of the coupled cluster theory11–14 to the quantum
chemistry1, it took a long time to obtain MRCC formulations suitable for
the black-box-type implementations. The original MR-CC approaches are
formally complicated and numerically expensive since the calculation must
be performed for several states at a time. Moreover, the calculations are
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often plagued with the so-called intruder state problem as well as with
the problem of multiple solutions. Within one of the two basic MR-CC
formulations, the Fock-space (or valence-universal) CC method9,11–13, most
of these problems can be efficaciously overcome by the intermediate
Hamiltonian (IH)15,16 reformulation of the method17. In addition to several
formal simplifications, the IH version of the Fock-space (FS) CC method
provides a very efficient single-root algorithm for solving the CC equa-
tions17–19, which is very resistant to intruders20. The standard formulation
of the Fock-space CC approach, involving iterative procedures for solving
equations for cluster amplitudes, turned out to be very sensitive to intruder
states, which frequently results in poor convergence or divergence21. Con-
trary to that, the IH approach is a very elegant and computationally attrac-
tive scheme which replaces the standard two-step procedure of obtaining
cluster amplitudes, and constructing and diagonalizing the effective
Hamiltonian with a simple one-step procedure of solving the eigenvalue
problem for the intermediate Hamiltonian17.

The coupled cluster-based approaches are being more and more fre-
quently used in calculations of molecular properties for excited states. That
mainly concerns the EOM-CC and SimilarityTransformed EOM (STEOM)
methods22. Both approaches usually use analytical gradients23,24. The
EOM-CC method has been employed by Sattelmeyer et al.25 to compute the
equilibrium geometry and harmonic frequencies for low-lying excited states
of several diatomics. The standard CC scheme with singles and doubles
(CCSD) plus some approximate variants including triples (CC3 26 and
CCSDT-1 27) was used. Results for larger molecular systems obtained with
EOM 28 and STEOM 29 have been also reported. Larsen et al.30 compared the
equilibrium geometry and harmonic frequencies obtained with different
versions of LRCC with the full CI results for N2 molecule. The approxima-
tions considered ranged from CIS, CC2, CCSD up to CC3 26,31. The full
EOM-CCSDT treatment of equilibrium geometry and adiabatic excitation
energies have been reported in ref.32 for three lowest excited states of CO
and N2 with several basis sets including quadruple-zeta. Pal and coworkers
employed analytical gradients33 for the FS-CCSD approach to compute di-
pole moments for both singlet and triplet excited states for H2O 34 and the
radicals like OH, OOH and COOH 35.

The aim of the current work is to investigate the performance of the
Fock-space CCSD method in the calculation of the equilibrium geometry
(Re) and harmonic frequencies (ω) of low-lying excited states of N2 and CO
molecules. Evaluation of the equilibrium geometry automatically provides
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adiabatic excitation energies. The Fock-space CCSD values will be confront-
ed with the EOM-CCSD quantities and related to the experimental data.

METHOD

A common feature of all possible versions of the Fock-space CC approach is
the use of single Fermi vacuum to define cluster operators. In the FS-CCSD
method used in this calculation, the Hartree–Fock (HF) determinant is se-
lected to be a Fermi vacuum. Due to this selection the method is designed
to provide excitation energies from the ground state which should be rela-
tively well described by the single-reference CCSD method36.

Multireference CC formulations are obtained by replacing the single-
reference determinant with a multidimensional reference space. The refer-
ence space determinants enter the MR-CC expansion directly while the or-
thogonal space contributions are generated by the second-quantized cluster
excitation operators, or their products, acting on the reference space9,10.
There are two problems associated with the use of single Fermi vacuum.
The first one is the redundancy of the cluster operators meaning that the
same excitation can be generated by more than one cluster operator, thus
the number of cluster amplitudes that must be determined exceeds the
number of equations that can be obtained by considering the CC equations
with the fixed number of particles (or quasiparticles in our version of the
FS-CC method). This problem has been solved by introducing valence-
universal strategy of solving the equations, which introduces a sequence of
sets of additional equations generated by problems with a lower number of
quasi-particles9. That gives the method a Fock-space character. The other
problem is associated with the fact that, contrary to the single-reference
case, excitation operators defined with respect to a single vacuum, in
general, do not commute. The reason is that, in addition to quasi-particle
creation operators, they can have quasiparticle annihilation operators.
This problem has been solved by introducing the normal-ordered form
of the exponential expansion which prevents contractions between cluster
operators12,13.

The states we want to describe are low-lying excited states dominated by
single excitations with respect to the HF determinant. Thus, selecting active
occupied and active unoccupied orbital levels, the reference space is
spanned by determinants obtained from the HF one by single excitations
from active occupied to active unoccupied spin orbitals (by creating one ac-
tive hole and one active particle in the HF determinant). The reference
space is denoted by M(1,1) and corresponds to the problem with two quasi-
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particles. Contributions from its orthogonal complement are generated by
cluster operators. The cluster operators that have to be considered at the
(1,1) level can contain at most two active quasi-particle annihilation opera-
tors, which is the number of quasi-particles in the reference determinants.
The FS-CCSD approximation assumes the inclusion of one- and two-particle
components in the cluster operator S; so for each type of cluster operators
we have

T T T T S= + ≡1 2
0 0, ( , ) (1)

S S S S S S( , ) ( , ) ( , ) ( , ) ( , ) ( , ),1 0
1

1 0
2
1 0 0 1

1
0 1

2
0 1= + = + (2)

S S( , ) ( , )1 1
2
1 1= (3)

where the superscript (i, j) is used to denote the number of active particle (i)
and hole (j) annihilation operators in the cluster operators. The subscript
denotes the particle-rank of the operator. It must be mentioned that the
S(1,1) operator does not have to contain deexcitation operators (excitations
leading from the reference space to the HF determinant)7. The standard
FS-CCSD equations for the cluster amplitudes at the (1,1) level can be writ-
ten in the form17

P X H X PI
( , ) ( , ) ( , ) ( , )( ) ( )1 1 1 1 1 1 1 11 1 0− + = (4)

with

H HT T= −e e (5)

X N P N S S S SS( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ [1 1 1 1 1 0 0 1 1 0 0 11= − = + + +e ] S P( , ) ( , )]1 1 1 1 (6)

where P(1,1) and PI
(1,1) are projections on M(1,1) and a subspace of the or-

thogonal space that is generated by S(1,1) while acting on M(1,1), respectively.
N[...] stands for the normal-ordered form of the operator. According to
valence-universal strategy the T, S(1,0) and S(0,1) cluster amplitudes are pro-
vided by the lower-valence-level calculations, i.e., by the standard single-
reference CCSD calculation for the ground state (zero-quasi-particle (0,0)
sector), and then by the electron-affinity (EA) and ionization-potential (IP)
(one-quasi-particle (1,0) and (0,1) sectors) FS-CCSD calculations, respec-
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tively. The energies for selected excited states, or excitation energies if the
so-called normal order form HN = H – 〈Φ|H|Φ〉 is used instead of H, are ob-
tained by diagonalization of the effective Hamiltonian

H P H X Peff
( , ) ( , ) ( , ) ( , )( )1 1 1 1 1 1 1 11= + (7)

which is nothing else but the P(1,1)–P(1,1) block of the transformed
Hamiltonian appearing in Eq. (4). Thus the effective Hamiltonian formula-
tion of the FS-CCSD method consists of two steps. The first one is to solve
Eq. (4) iteratively for S(1,1). This, in many cases, can pose serious problems
and many such examples are known from the literature21. The second step
comprises the construction of the effective Hamiltonian and its diagonal-
ization. A simultaneous determination of all cluster amplitudes is required
and the calculation is performed for several states at a time.

The use of the intermediate Hamiltonian technique in the case of the
FS-CC approaches is especially advantageous. This is because of valence-
universal strategy of solving the FS-CC equations, which leads to a linear
expansion in X in terms of the unknown cluster amplitudes at each valence
level beyond the zero-one. The intermediate Hamiltonian formalism intro-
duces diagonalization as an alternative to less effective iterative ways of solv-
ing the equations. In the case of the FS-CC methods that provides a very
simple and dependable computational scheme. To obtain the intermediate
Hamiltonian formulation, the X(1,1) operator is divided into two parts17

X Y Z( , ) ( , ) ( , )1 1 1 1 1 1= + (8)

Z P X( , ) ( , ) ( , )1 1 1 1 1 1= I . (9)

It should be noted here that all unknown cluster amplitudes at the (1,1)
level are contained in the Z(1,1) operator. The Y(1,1) and Z(1,1) operators can
be used to split the transformation in Eq. (4) into a sequence of two similar-
ity transformations since

1 1 11 1 1 1 1 1+ = + +X Y Z( , ) ( , ) ( , )( )( ) . (10)

Defining P0
(1,1) = P(1,1) + PI

(1,1) it is easy to see that the operators

P X H X P0
1 1 1 1 1 1

0
1 11 1( , ) ( , ) ( , ) ( , )( ) ( )− + (11)

P Y H Y P0
1 1 1 1 1 1

0
1 11 1( , ) ( , ) ( , ) ( , )( ) ( )− + (12)
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have the same eigenvalues since they are related through a similarity trans-
formation. Because of Eq. (4), all eigenvalues of the effective Hamiltonian
(7) are among eigenvalues of the transformed Hamiltonian (11)16; thus they
are among eigenvalues of the operator (12). It follows that all eigenvalues
of the FS-CCSD effective Hamiltonian can be obtained as eigenvalues of the
operator

H P H Y PI
( , ) ( , ) ( , ) ( , )( )1 1

0
1 1 1 1

0
1 11= + (13)

which is called the intermediate Hamiltonian17. Let us point out several ad-
vantages of the intermediate Hamiltonian formulation17. First, the energies
can be obtained without necessity of determining the cluster amplitudes
since the intermediate Hamiltonian does not depend on Z(1,1). If necessary,
the cluster amplitudes can be calculated from a set of its eigenvectors. This
order is opposite to what is required in the effective Hamiltonian formula-
tion where determination of the energies follows the determination of clus-
ter amplitudes. As a consequence, the intermediate Hamiltonian formula-
tion leads to decoupling of the eigenvalue problems corresponding to dif-
ferent states and separate calculations for individual states are possible by
employing single-root diagonalization procedures. Second, the intermedi-
ate Hamiltonian version introduces many formal simplifications that can
be seen while analyzing Eq. (13)17. Finally, the method offers an efficient
way of solving the equations, which is resistant to intruder states. It is
worth mentioning that in all cases when the traditionally formulated
method fails to reach convergence, the intermediate Hamiltonian formula-
tion provides, without any problem, not only the principal solution but
also alternative solutions of the standard approach.

The (0,0) level calculation is just an ordinary application of the single-
reference CCSD method to the ground state. At the (1,0) and (0,1) level the
intermediate Hamiltonian formulation reduces the FS-CCSD method to the
EA-EOM-CCSD and IP-EOM-CCSD ones. The only difference is that the
S(1,0) and S(0,1) cluster amplitudes must be determined from the sets of the
EA- and IP-EOM-CCSD eigenvectors. These cluster amplitudes are required
at the (1,1) level.

RESULTS AND DISCUSSION

The intermediate Hamiltonian reformulation of the FS-CCSD method pro-
vides a convenient framework for a numerical implementation of the
method. The method has been implemented at the state-of-art level using
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factorization and efficient numerical procedures. That enables calculations
using relatively large basis sets and reference spaces. Since there are no con-
vergence problems; basically arbitrary sets of active unoccupied and occu-
pied orbitals levels, determining our reference space, can be used. To de-
note different reference spaces we use the standard notation (i, j) with i and
j being the numbers of lowest unoccupied and highest occupied orbitals in
the HF determinant treated as active.

Our paper is devoted to excited-state properties like equilibrium geome-
try, harmonic frequency as well as vertical and adiabatic excitation ener-
gies. The results are reported for two diatomic molecules: N2 and CO. The
IH-FS-CCSD results are, for comparison, supplemented with the EOMCCSD
ones. Two different basis sets are used: polarized basis set POL1 by Sadlej37

and large augmented correlation-consistent quadruple-zeta (aug-cc-pVQZ)
basis set by Dunning38. Also two different reference spaces are used in the
FS-CCSD calculations. In all calculations the core electrons are frozen and
the d functions are spherical. The results are collected in Tables I–III and
confronted with the experimental data. Although the ground state equilib-
rium geometry and harmonic frequency of the N2 and CO molecules have
been calculated at various levels of the CC theory several times (e.g. ref.39),
we show the CCSD results in Table I just for completeness of the presenta-
tion. Table II shows results obtained for two excited states of N2 (1 Σ u

– , 1∆u)
and in Table III results for excited states of CO (1Π, 1Σ–) are presented.
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TABLE I
Total energies (in a.u.), equilibrium geometry (in Å) and harmonic frequencies (in cm–1) for
the ground state of N2 and CO molecules at the CCSD level

POL1 aug-cc-pVQZ Exp.a

N2

E –109.290482 –109.386848

Re 1.1163 1.0932 1.0977

ωe 2368 2434 2359

CO

E –113.074127 –113.171640

Re 1.1419 1.1246 1.1283

ωe 2187 2231 2170

a From ref.40



One of important factors influencing the FS-CCSD results is the selection
of active orbital levels. In the standard FS-CC approaches, the use of large
reference space is disadvantageous because that increases the number of
cluster amplitudes and the size of the set of CC equations. Moreover, the
iterative procedure of solving the equations is very sensitive to intruder
states, which can result in convergence problems. The latter can occur
in both one-quasi-particle sectors, (1,0) and (0,1), and at the two-quasi-
particle level. The IH formulation shows that energies obtained at one
quasi-particle level are independent of the reference space choice. Only the
cluster operators which must be calculated from the EA- and IP-EOM-CCSD
eigenvectors do depend on the active-orbital-level selection. The (1,1)
equations are solved by the direct diagonalization of the intermediate
Hamiltonian matrix whose size also does not depend on the reference
space. Only the number of columns that require additional dressing intro-
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TABLE II
Equilibrium geometries (in Å), harmonic frequencies (in cm–1), vertical (VEE) and adiabatic
(AEE) excitation energies (in eV) for N2 with the IH-FS and EOM methods at the CCSD level

POL1 aug-cc-pVQZ

Exp.aIH-FS EOM IH-FS EOM

(6,4) (13,4) (6,4) (13,4)

1Σu
−

Re 1.2783 1.2686 1.2688 1.2749 1.2519 1.2505 1.2755

ωe 1723 1710 1707 1813 1726 1724 1530

VEEb 10.054 9.660 9.885 11.059 10.034 10.131 9.92

AEE 8.607 8.440 8.665 8.906 8.664 8.793 8.450

1∆u

Re 1.2723 1.2625 1.2637 1.2691 1.2454 1.2452 1.268

ωe 1745 1732 1724 1844 1752 1744 1559

VEEb 10.531 10.139 10.316 11.533 10.517 10.568 10.27

AEE 9.173 9.000 9.167 9.490 9.238 9.306 8.939

a Adiabatic experimental EEs, geometry and harmonic frequencies are from ref.40; vertical
experimental EEs from ref.30 b VEEs are computed at the geometry given in Table I



duced by HY(1,1) is growing. Thus, the computational effort in the IH for-
mulation is not significantly affected by the increasing number of active
orbitals and one of the aspects of our study that we can easily investigate is
the effect of the reference space size on the computed quantities.

For the N2 molecule two reference spaces, (6,4) and (13,4), are selected.
Concentrating on the equilibrium bond length it can be seen that the en-
largement of the reference space from 24 to 52 reference functions intro-
duces non-negligible effects. The equilibrium bond length is shortened for
both considered states by approximately 0.01 Å in the case of the POL1 ba-
sis set and by more than 0.02 Å when the augmented cc-pVQZ basis set is
used. As seen from Table II, the (6,4) Re results are closer to the experimen-
tal bond length value than the (13,4) ones. However, the (13,4) Re are very
close to those of EOM-CCSD which suggests that this is not an incident. At
first sight the large active space Re values may look disappointing when
compared with the smaller active space results. This deterioration of Re rela-
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TABLE III
Equilibrium geometries (in Å), harmonic frequencies (in cm–1), vertical (VEE) and adiabatic
(AEE) excitation energies (in eV) for CO with the IH-FS and EOM methods at the CCSD level

POL1 aug-cc-pVQZ

Exp.aIH-FS EOM IH-FS EOM

(6,4) (15,4) (6,4) (15,4)

1Π

Re 1.2673 1.2547 1.2464 1.2409 1.2328 1.2254 1.2353

ωe 1477 1483 1518 1565 1553 1581 1518

VEEb 8.727 8.460 8.641 8.779 8.536 8.656 8.51

AEE 8.135 7.989 8.227 8.180 8.071 8.244 8.068

1Σ−

Re 1.4032 1.3933 1.3852 1.3750 1.3683 1.3617 1.3911

ωe 1154 1147 1192 1207 1216 1240 1092

VEEb 10.054 9.738 9.919 10.345 10.074 10.171 9.88

AEE 7.896 7.848 8.076 8.193 8.151 8.313 8.069

a Adiabatic experimental EEs, geometry and harmonic frequencies are from ref.40; vertical
experimental EEs from ref.41 b VEEs are computed at the geometry given in Table I



tive to the experiment is particularly visible for the larger basis set. How-
ever, one should be aware that at the singles and doubles level, the equilib-
rium bond length is frequently too small and only more advanced treat-
ment of electron correlation cures the problem. For example, the EOM-CC
results reported in ref.32 show that the effect of connected triple excitations
can increase the bond length by about 0.02 Å. A similar effect may be ex-
pected in the FS-CC calculations, i.e., the inclusion of three-body clusters
may give larger equilibrium distances.

An analogous situation is observed in the Re calculation for the CO mole-
cule. Larger reference space leads to shorter bonds with the effect about
0.01 Å for the small basis set and 0.008–0.007 Å for the large one. Again the
inclusion of the three-body clusters may be seen as a remedy for too small
equilibrium distances. Nevertheless, the (15,4) FS-CCSD equilibrium bond
lengths are, in general, closer to the experimental ones than those of EOM-
CCSD, which may indicate that the inclusion of higher-excitation effects is
less important in the FS-CC calculation than in the EOM-CC one.

For harmonic frequencies the enlargement of the reference space has usu-
ally a moderate effect of several wavenumbers for the small basis set but it
can have unexpectedly large effect of several tens of wavenumbers for the
large one. The ground-state calculations show that, in majority of cases, an
increase in the bond length is associated with decreasing value of the har-
monic frequency and vice versa. The N2 results reported in Table II show
the opposite tendency, i.e., lower harmonic frequencies and smaller curva-
ture at equilibrium are associated with shorter bonds. For the CO molecule
this pattern of behavior is not preserved and, in fact, we have two different
cases. The 1Σ– state case is similar to those observed for N2 while the 1Π
state represents this more expected behavior. On the other hand, there are
no irregularities in the relation between equilibrium bond length and har-
monic frequency as far as the basis set size effect is concerned. Larger basis
sets make the bond shorter and this increases the harmonic frequency.

In Tables II and III we also quote vertical and adiabatic excitation ener-
gies obtained for the discussed excited states of N2 and CO. The IH-FS-
CCSD method has been already applied to study vertical excitation energies
of N2 and CO 19; the results, however, have been obtained at the experimen-
tal geometry. Here, we rely on theoretical values only reporting vertical EEs
corresponding to the calculated ground state equilibrium geometry shown
in Table I. Again we have found that the enlargement of the active space
lowers excited state energies leading to smaller VEE values by about 0.4 eV
for the POL1 basis set and by more than 1 eV for the aug-cc-pVQZ basis set.
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For the CO molecule this effect is not so significant giving between 0.24
and 0.30 eV for all considered cases.

The adiabatic EEs (AEEs) seem less sensitive to the model space size. The
largest differences observed for the N2 molecule are about 0.25 eV in the
aug-cc-pVQZ calculation. For CO these differences are much smaller, 0.11
and 0.04 eV for 1Π and 1Σ–, respectively. In all cases smaller values of AEEs
correspond to larger reference spaces. Since the computed excitation ener-
gies are larger than the experimental ones, which is especially visible for
the aug-ce-pVQZ basis set, hence, the extension of the model space works
toward better agreement with the experiment. Enlargement of the reference
space means that additional electron correlation effects are being included
in the calculation. In spite of the fact that the dimension of HI

(1,1) is con-
stant, the number of columns modified by the additional term HY(1,1) in
Eq. (13) is growing. Thus, as long as the cluster conditions are satisfied we
can expect that larger reference space should lead to the improvement of
the results. Although the FS-CCSD results can be considered quite satisfac-
tory, another step which should give their further improvement is the in-
clusion of three-body term in the cluster operator. The aug-cc-pVQZ FS-
CCSD vertical EEs differ from the experiment by 0.11 and 0.25 eV for 1 Σ u

–

and 1∆u, respectively, while the corresponding adiabatic EEs come out a
little bit worse being 0.21 and 0.30 eV off the experiment. For the CO mole-
cule the situation is slightly better. The deviations of the vertical EEs are
equal to 0.03 and 0.19 eV for the two considered states and the adiabatic EE
errors are even reduced to 0.00 and 0.09 eV. What is interesting here is that
the EOM-CC EEs are significantly more off the experiment. The average
errors in the aug-cc-pVQZ N2 calculation of VEEs are 0.18 eV for FS-CCSD
((13,4) reference space) and 0.26 eV for EOM-CCSD while for AEEs the cor-
responding errors are 0.26 and 0.35 eV. The errors in the aug-cc-pVQZ CO
calculation of VEEs are 0.09 eV ((15,4) FS-CCSD) and 0.22 eV (EOM-CCSD)
while the AEE calculation gives 0.04 eV for FS-CCSD and 0.21 eV for EOM-
CCSD.

The results obtained in our preliminary calculations for N2 and CO using
the IH-FS-CCSD method show that the intermediate Hamiltonian version
can be effectively employed to describe properties of excited states. Due to
the reformulation the computational scheme is simple and resistant to in-
truder states. The results show that relatively large reference spaces may be
required to reach a desired accuracy but the method does not show prob-
lems with reaching the convergence is such cases. In spite of the fact that
some of the FS-CCSD results reported here may not be seen as highly accu-
rate, they seem, in general, definitely more accurate than those given by
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the EOM-CCSD method when compared with experiment. Two sources of
the errors with respect to experiment which can be considered are the basis
set and the lack of higher-excitation effects in the expansion. While com-
paring the POL1 and aug-cc-pVQZ results, it looks like the smaller basis set,
in many cases, gives better results than the large one. The POL1 basis set
leads to definitely less accurate total energies. The results reported in Table
I show a big difference between the ground state energies obtained within
both basis sets. This indicates that the POL1 excited state energies must be
equally inaccurate to give reasonable energy differences. It looks like the
POL1 basis introduces a balanced description of the ground state and some
excited states, which leads to quite effective cancellation of the errors. The
aug-cc-pVQZ basis set is obtained from that constructed for accurate
ground state calculations. In spite of including functions improving de-
scription of excited states it seems that it still retains the preferential treat-
ment of the ground state. That can lead to the unbalanced description and
to too large energy differences. So it seems that the standard aug-cc-pVQZ
basis set needs further improvement to allow more accurate treatment of
excited states. Since we cannot fully rely on the cancellation of errors in en-
ergy difference calculations, which is not systematic, we should try to de-
scribe all states under consideration as accurate as possible. A similar con-
clusion can be reached regarding the second aspect of the calculation, i.e.,
the importance of higher-level excitation in the expansion. The problem
should be followed and discussed while analyzing the results, and, finally,
the higher-level excitation effects should be included in the calculation if
necessary.

CONCLUSION

In this paper the FS-CCSD method has been applied to calculate some mo-
lecular properties of excited states. The main goal of the paper is to show
that the intermediate Hamiltonian formulation provides a very simple
computational scheme which can be effectively coded and used in calcula-
tions requiring relatively large basis sets and reference spaces. In this pre-
liminary study we performed calculations of equilibrium geometries, har-
monic frequencies, vertical and adiabatic excitation energies for several ex-
cited states of N2 and CO. We observe that in order to obtain a reasonable
estimate of the properties of excited states, relatively large reference spaces
should be used. Two different basis sets have been employed in the calcula-
tions and the effect of the basis set on the results has been discussed. Possi-
ble importance of higher-level excitations in the FS-CC and EOM-CC ex-
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pansion has been also analyzed. The results obtained in this work seem to
indicate that at the CCSD level the FS-CC method gives better agreement
with experiment than EOM-CC.

M. Musiał acknowledges the support from the Committee for Scientific Research, Poland, under
grant No. 4 T09A 013 24.
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